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Abstract 

In this short note, we compute the dimension of the open subset of the Hilbert scheme, 
Hilh,(,,P”, parametrizing AG closed subschemes X c P” of codimension 3. @ I998 Elsevier 
Science B.V. All rights reserved. 

1991 Mufh. Subj. Class: 14CO5 

0. Introduction 

It is well known that Arithmetically Gorenstein (AG) closed subschemes X C P” of 

codimension 3 are parametrized by smooth points of the Hilbert scheme H = HiZb,(,,P” 
(see [ 161). The goal of this note is to compute the dimension of the local rings &J[XI 

at these points. 

In 1960, Grothendieck [6] proved the existence of a projective k-scheme, H = Hilbpct) 
P”, parametrizing closed subschemes X of P” with given Hilbert polynomial 

p(t)~Q[t]. Until now there are few general results about these schemes concern- 

ing connected components, dimension, smoothness, topological invariants, . and they 

have only been studied for special polynomials p(t)~Q[t] or in remarkable parts 

of H = Hilb,,,,P” (for instance, arithmetically Cohen-Macaulay closed subschemes of 

codimension 2, twisted cubits, . .). 

In 1975, using the Hilbert-Burch structure theorem for homogeneous perfect ide- 

als I(X) c k[&, . ,X,J of codimension 2, Ellingsrud proved that Arithmetically 
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Cohen-Macaulay (ACM) closed subschemes XC P” of codimension 2 are 

non-obstructed and he computed dim &H,[XI in terms of the degrees of the syzygies 

of X [4]. Furthermore, we know exactly when two ACM closed subschemes X c P” 

of codimension 2 belong to the same irreducible component of the Hilbert scheme 

and the polynomials which are Hilbert polynomials of some ACM closed subscheme 

X c P” of codimension 2 [4,7]. Now we come to the AG codimension 3 case. By using 

Buchsbaum-Eisenbud’s structure theorem for homogeneous ideals I(X) c k[&, . . . ,X,] 

of codimension 3 [l], we can prove that AG closed subschemes X c P” of codimen- 

sion 3 are non-obstructed (see [ 161 or [ 14, Proposition 3.121 because X is in the 

liaison class of a complete intersection [20]), we can characterize the Hilbert poly- 

nomials of AG closed subschemes X c P” of codimension 3 (see [3, 171 and [19]) 

and decide when two AG closed subschemes X c P” of codimension 3 belong to the 

same irreducible component of the Hilbert scheme (see [3]). We refer to [5] for other 

well-known results on ACM codimension 2 closed subschemes of projective space 

which have been shown to have striking analogs for codimension 3 AG closed sub- 

schemes. 

However, it remains open the computation of dim &QI. The problem is the fol- 

lowing: Let X c P” be an AG closed subscheme of codimension 3. What can be said 

about two (2~ + 1) x (2r + 1) skew matrices M and N whose pfaffians generate Z(X)? 

In this paper, by using the structure theorem of Buchsbaum and Eisenbud, the fact 

that I(X) is syzygetic and the explicit resolution of A21(X) of Lebelt-Weyman, we 

compute the dimension of the open smooth subset of the Hilbert scheme, Hilbp(ljP”, 

parametrizing AG closed subschemes X c P” of codimension 3. 

1. Notations and general facts 

Throughout this paper we will work over an algebraically ground field k of char- 

acteristic # 2, R = k[&, . . . ,X,1, m = (X0,. . . ,X,,) and P” = Pro-i(R). Given a closed 

subscheme X c P”, we denote by .Fu (resp. I =1(X) c R) the ideal sheaf (the homoge- 

neous ideal) of X, Nx = Xom~,(.P,~,C?y) the normal sheaf, A = R/Z(X) and H’(R,A,A) 

the corresponding i.algebra cohomology group of the graded morphism R + A. 

In the sequel, FHomR(M, -) denotes homomorphisms of graded R-modules of de- 

gree p. If T,(M) is the group of sections of M” with support in V(m) c Spec(R), i.e. 

T,(M), =Ker(M, --f F(Pn,M”(p)), we denote by HA(-) the right derived functors 

of r,(-). 

For any closed subscheme X c P" of codimension 2 3 one may use the well-known 

cotangent complex description of H’(R,A,A), as done in [13, Section 2.21 to prove: 

HomR(I,I) 2 R, 

H’(R,A,A) Z HomR(f,A) ” Ext~(Z,I), 
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and the isomorphisms preserve the grading (the proof is quite easy in the ACM case). 

Moreover, the isomorphisms involving lj, hold if we replace m by any graded prime 

ideal @ satisfying depth A, > 1. 

In the case X is an AG closed subscheme of P” of codimension 3, there exists a 

minimal self-dual resolution of its homogeneous ideal of the following type [l]: 

r 
(*) 0 - R(-f) -+ &t-n*,) + @RR(-JQ) 4 I --t 0, 

i=l I=1 

where f = e+n+l and e by definition is the largest integer t such that H”-3(6k(t)) # 0. 

The self-duality leads easily to f - nxi = nti provided we order the integers ni, as 

n1 I F n12 F ’ . . 5 nlr and n21 2 1122 > . 2 np. 

Moreover, since pd(Z) = 2, we get 

E&Z) ” Ext;(I, R) @R I 2 Ext;(I, R) @A I/i2, 

i.e. 

Extz(Z,l) g 1/12(J‘), J‘ = e + n + 1. 

Similarly, for the corresponding sheaves, we have 

NX = t”xt’(& XX), 

2. Arithmetically Gorenstein subschemes of P” 

We will begin this section with a result (Proposition 2.2) which rather explicitly 

describes the cohomology groups of H’(Nx(p)) . m case X is an AG closed subscheme 

of P” of codimension 3. Later we compute the dimension of H”(N,&)), thus deter- 

mining h’(N&)) = dim H’(Nx(p)) completely for any i and p. As a special case we 

get the dimension of the Hilbert scheme at X. We will need: 

Lemma 2.1. Let X c P” he arz AG closed subscheme of codimension 3. Then, there 

exist exact (seifldual up to twist) sequences 

0 + Nx --f @ &(nli) --f @ Ck(n2,) --f 9x/4; @ wx(n + 1) ---f 0 

for uny iilteger p. 

Proof. We consider the locally free resolution of .Fx 
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obtained by sheafing the resolution (*) of the homogeneous ideal I =1(X) of X above. 

We set K := Coker(R(-.f) 4 @R(-Q)), f = e + n + 1. Applying the functor 

Zomc,,(-,6x)), we get 

and 

Since &xt’(K”, Q) g &t2(9x, 6:~ ) Z o~(n+ 1) and &:x(e) ” OX, the map 0x(f) -+ 

&t’(K”,&) is an isomorphism. Hence, .#hm(Kw, &) 2 @C&(Q). Furthermore, 

&x”xt’(.YX,&) Z &ct2(YX,,%,,..) ?Z .y,./.Yj @ tux(n + 1) and the first exact sequence 

easily follows. Now since A is a Gorenstein ring, we can repeat exactly the same 

proof above to the graded cones R 4 A = R/I, replacing of course ox(n + 1) by the 

canonical module Exti(A,R) % A(f), and we get the second exact sequence. 0 

Proposition 2.2. Let X c P” he uo AG closed subscheme of codimension 3. Then, 

H2(R,A,A) = 0 = and X is non-obstructed. Moreover, for any integer p, we huve 

H’(Nx(p)) = 0 for 0 < i < n - 3 and the exact sequences 

0 --f H”-3(Nx(p)) + @H”%x(n,, + p)) 4 CJ3H”-3(Ox(n2i + p)) 

---f N”(NX(-p - n - 1))” + 0 

und 

0 - H’(Nx(p)) + @H’(~(,Y(~I, + P)) ---f @W”(@..(n2i + P)) 
+ H”-3(Nx(-p - n - 1))” + 0 

Proof. We will deduce the vanishing of H”(R,A,A) from results of Huneke and 

Herzog. Indeed by [lo, Corollary I .13], H’(R,A,A), = 0 for any ideal f~ EProj(A) 

such that dim A, = 0. The vanishing of H2(R,A, A) follows then from the Cohen- 

Macaulayness of 1/12, cf. [8] or [2]. Indeed if H’(R,A,A) # 0, then there exists a 

graded prime ideal KJ c A such that H2(R,A,A),, # 0 and such that H2(R,A,A),,f = 0 

for all graded prime ideal $5 y. We get a contradiction (cf. Section 1) using 0 # 

H2(R,A,A), =qj:,,,,(H2(R,A,A),,)” ~,;.,A,,(Ex~*(Z,I)~,,)=O; see also [ll]. 
Now as pointed out in [ 161, the non-obstructedness of X follows from [l 1, The- 

orem 3.6 and Remark 3.71, because the deformation theories of XC P” and R ---f A 

correspond uniquely in case dimX > 1; in the zero-dimensional case there is nothing 

to prove because H’(N,y) =0 and H’(R,A,A)” =O. 

Moreover, by the Cohen-Macaulayness of l/I’, we get 

Hk(Z/Z2) E H!+-‘(4/.Y2)=0 for 2 5 i 5 n ~ 3 

because dim A = n - 2. Since 

H’(Nx(p)) 2 H”-3p’(Ni(-p) M OX)” 2 H”-3-‘($x/.Yi(e - p))’ 

we get H’(Nx(l*))=O for O<i<n-3. 
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It remains to prove the exact sequences. If dimX = 0, i.e. n = 3, we conclude by tak- 

ing global sections of the first exact sequence of Lemma 2.1 and using duality. Finally 

if dimX 2 1, the Cohen-Macaulayness of I/I2 implies Hh(Z/12) = 0 for i = 0, 1, i.e. 

(I/l2 )e+n+ 1 +,u S H’(&/.Yi(e + n + 1 + P>) 

” H”-3((Yx/9;)U(-n - 1 - cl))“. 

Hence, we get one of the exact sequences from Lemma 2.1. Now dualizing this exact 

sequence, we get the other exact sequence because @H”(&(nli + ,u))” F @H”-3(~~ 

(-nli - p)) ” @H n3 r; - (Lx(e - nli - p)) and e + n + 1 - nli =Q. 0 

Remark 2.3. If X c P” is a closed, locally Gorenstein and equidimensional subscheme 

of codimension 3, one may by the proof above see that the sheaf H2(R,A,A)” vanishes 

(see also [ll, Corollary 4.111). 

Proposition 2.4. Let Xc P” be an AG closed subscheme of codimension 3. Then, 

there is an exact sequence 

0 -+ Ext;(l,/) --f (1 @R I)(f) + Z(f) --f (Z/P)(f) g Ext;(I,z) --+ 0, 

where f = e + n + 1. Moreover, Exth(Z,I) ” (A2 Z)(f). 

Proof. Twisting the exact sequence (*) of Section 1 by f, we get the exact sequence 

O+R+&jR(nl,) 
r 

+ @R(nzi) -+ I(f) + 0 
r=l r=l 

which we tensor with I and we obtain 

@I (n,,) ” -@I (n,,)- ;‘z Z@!(f) -0 

Applying Hom(-,I) to the resolution (*), we have by definiton 

Ext’(Z,Z) ” ker(ysyz)/im(yr). 
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Thus, Ext’(l,l) Z ker(lJ3) and the first exact sequence is proved. Finally, using the 

fact that I is a syzygetic ideal [18], one knows that the sequence 

is exact because 2 is invertible in R, and the conclusion of (2.4) is proved. Cl 

The following useful remark will give us a finite free resolution (of length 3) of 

A\‘I: 

Remark 2.5. By Weyman [21], the sequence (involving graded pieces of the divided 

power algebra): 

O+DIFI @+Fz-‘(F~EFF~)~~D~F, +FO@D,F, 

is exact, provided 

O-Fz=R(-f)+F, +FO+IiO 

is the exact sequence (*) of Section 1. 

Finally, combining Proposition 2.4 and Remark 2.5, we will compute for any AG 

closed subscheme X c P” of codimension 3, the dimension of the Hilbert scheme at X, 

dim HilbpjP”, in terms of the degrees of the syzygies of X. In Theorem 2.6 we have 

used the convention (hfi”) = 0 for h < 0, and the numbers nij are ordered as mentioned 

in Section 1. 

Theorem 2.6. Let X c P”, n > 3, he an AG closed subscheme of codimension 3 whose 

homogeneous ideul I =1(X) has a minimal free resolution of the following type: 

(*> O+F2=R(-f)+F,=&R(-n*i) 4 Fo = &jR(-nli) -++O. 
1=I i=l 

Then, for any integer p, we have 

(1) h”(Nx(p))= CLT,hO(O’x(nl, + p)) + dim(l\2Fo)f+P - dim(l\2F,)f+,l - 

dim(F1 ),f+ti + dim(Fo )P, 
(2) hi(Nx(p)) = 0 for 0 < i < n - 3, and 

(3) h+3(Nx(p))= Cr=, hnP3(Cx(nll + ,a)) + dim(l\2Fo),-l, - dim(r\‘F1),-, - 

dim(Fl),_, + dim(Fo)_,_l_,,. 

In particular, 
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Remark. If 12 = 3, the final dimension formula is the dimension of locally closed sub- 

schemes of P3 consisting of graded Gorenstein R-algebra quotients with fixed Hilbert 

function provided we replace /zO(fl~(nli)) by dimA,,,. 

Proof. Using Remark 2.5, DzFl = &FI (symmetric algebra square) and DlFj = Fj, we 

get the exact sequence 

Since Fi ~3 F2(f) = F,, it follows from Proposition 2.4 that 

dim(,Ext’(I,I)) = dim - dim(Fo @ FI )f+p + dim(&F, )f.+b 

+ dim(Fo), - dim(F1 )p. 

Since F,(f) = @R(f’-nsi) = CBR(nli), tensoring the exact sequence (*) with F,(f), 

we get 

0 --f F2 @ Fl(f) -+ FI @ FI(~) -+ Fo @F~l(f) + @Z(W) + 0 

which together with the isomorphism A2 F, @ S2Fl ?z F, @F, gives 

-c o h ,aX(ali + p) - dim(F1 8 FI )f+p 

+ dim(&Fl )f.+p + dim(Fo), 

= dim - c h”&(nli + p) - dim 

+ dim(Fo), 

and we easily get the formula of h”(Nj&)) = dim(,Ext’(Z,Z)) as stated. In particular, 

since X is non-obstructed, it follows that 

dim HiZbIxl P” = h”(Nx > 

= 2 hOcfix(qi>> + dim i F 
i=l 

( o)~-dim(~F,)-dim~F,~.~. 
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But 

Hence, 

dim (iFo)f -dim (LF,), - dim(F,)/ 

Finally, to show the formulas of h’(N,&)), i > 0, we use Proposition 2.2. We get the 

vanishing of h’(N&)) in the case 0 < i <n - 3 and moreover 

hO(Nx(-~ - R - 1)) - ~h”-3(0&z2i -f/L)) 

= h”-3(Nx(p>) - c h”-3(c&2,1 + p)). 

Since !~“-~(C9~(n2i + cl)) = h’(@,~(e - nzi - p)) = h”(G~(ntz - IZ - 1 - p)), we can easily 

conclude using the proven expression of h”(Nx(~)). q 

Remark 2.7. For a global complete intersection X c P” of type (nr,nz,ns) we deduce 

from Theorem 2.6 the well-known formula 

Remark 2.8. Now it is easy to find an expression of h”(Nx) or, equivalently, of 

dim Hifbfx)P” which does not involve C h”(C”x(nrl)). For instance, using the first exact 

sequence in the proof above, together with the expression of A2 FO (and corresponding 

expressions of &Fj and FO @ FI ) appearing later in the proof, we get 
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Example 2.9. Consider the AG curves XC P4 whose homogeneous ideal has a reso- 

lution of the following type (see [9, Theorem 1.21 for the existence of such smooth 

curves): 

0 + R(-10) + R(-6)5 8 R(-5)2 + R(-5)2 BRA + I --) 0. 

We easily get h”(&~(p)) = h’(fi~(5 - ,LL)) = (“f”) for 0 < ,D I 3. Hence x(0x(2>) = 

- 20 and x(&(3)) = 20. By Riemann-Roth’s theorem 

d = deg(X) = 40, g=gen(X)= 101. 

Now to compute dinzHiZb~x~P4, we use Theorem 2.6. Inserting h’(&(nii))= 

h’(op(nli)) - h’(fix(nii)), we get 

recalling nil 5 ni2 < . < ~217 and nxl > n22 2 . . . > ~7. The formula for h’(Nx) of 

Theorem 2.6 leads to 

h’(NX) = 5h1(QX(4)) + 2h’&(5)) - 2 =25 

which again implies h’(N.) = 125 because I = 5d + 1 - g = 100. 

Remark 2.10. Using Theorem 2.6, one may see that 

h”-3(Nx) = 2 1=, ( (n2i_ ‘) - (“ii_ ‘)) provided e<2min(nli). 

For the example above, this gives immediately h’(Nx) = 25. 

For proving the formula, we will first deduce a vanishing result of h’(&(-n - 1)) 

using Theorem 2.6. Indeed this last group vanishes provided 

(1) ?22j_nli<TZ+ 1 for any i,j, 

(2) -n2, + nli <n + 1 for any i, j, and 

(3) H”(.a’,(nij - n - l))=O for any i 

because (3) is equivalent to Ch”(&(nii -II - 1)) =dim(Fl)f_,,-1. Now note that (1) 

implies H”(&(n2, - n - 1)) = 0 for any j; hence (1) implies (3). Moreover, (1) is equi- 

valent to max(n2.i) < n + 1 + min(nri), and using max(ny) = f - min(nli), we see that 

(1) means exactly e < 2 min(nii). Since (2) is similarly equivalent to e < 2 min(nzj), we 

see that (1) implies (2). Hence if e < 2 min(nii), the group H’(&(-n - 1)) vanishes. 

Now we conclude by Proposition 2.2, 
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where we have used (3) and HO(cYx( n2j - n - I)) = 0 for any j, to see the equality to 

the right-hand side. 

2.11. In a forthcoming paper, we will come to the ACM codimension 3 case. We will 

give sufficient conditions for assuring the non-obstructedness of an ACM curve in P4 

and in some cases we will compute the dimension of the Hilbert scheme. Furthermore, 

we will give examples of obstructed ACM curves in P4 and we will describe infinitely 

many different liaison classes containing ACM curves [15]. 
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